US ERA ARCHIVE DOCUMENT



## Upper Missouri River

Then



Now



## Bank Stabilization





Floodplain Wetlands

Emergent (26 acres/mile)

Forested – (4 acres/mile)





## **Emergent Wetlands**

— Reference



Impaired



### Research Objectives

Upper Missouri River – US EPA Regional Environmental Assessment and Monitoring Program (REMAP)

- 1) Develop a multimetric Index of Biotic Integrity for emergent, floodplain wetlands of the upper Missouri River basin
- 2) Evaluate the biological condition of floodplain wetlands of the upper Missouri River

# **Study Area**



59 Wetlands
(22 PEMA)
(37 PEMC)

### **Biological Data**

Vascular plants

Periphyton composition

Soft-bodied algae

Macroinvertebrates

Sediment characteristics

### Physical Data

Water quality (35 variables)

Size

Elevation

Distance to river's edge

















#### Outline

Sampling methods

Species-area curves

Sub-sampling

Metric development

Box plots

Discriminant Analysis

**Randomization Test** 

IBI Scoring Criteria

Temporal variation

Spatial variation

## Sampling Methods – PEMC Wetlands

- Reference (n=6) vs. Impaired (n=6)
- Randomly selected wetlands (n=16; EMAP Protocol)
- Each wetland divided into 6 quadrants. Ten 1-m sweep samples collected in each quadrant (6 samples/wetland).
- Re-sampled wetlands for intra- (n=11) and inter-(n=5) year variation
- Taxonomy, abundance, and biomass estimates of invertebrates

### Species-area curve



### Invertebrate sub-sampling



### Metric Development

- Tested a total of 83 possible metrics
- Metrics consisted of:
  - Taxa Richness
    - •Total taxa, total taxa by Order, Shannon- Wiener Index
  - Proportional abundance
    - •By Order, Family, feeding group, habitat guild, voltinism
  - Proportional biomass
    - •By Order, Family, feeding group, habitat guild, voltinism



#### Strong separation

#### Proportional abundance of Chironomidae

#### Moderate separation

#### Proportional biomass of swimmer taxa





#### Weak separation

#### Proportional abundance of oligocheates



## Least Overlapping Metrics (t-test; P<0.10)

### Taxa Richness

- Ephemeroptera
   Tricoptera and
   Odonata (ETO)
   taxa
- 2) Odonata taxa



### Proportional Abundance Proportional Biomass

- 3) Coenagrionidae
- 4) Chironomidae
- 5) Culicidae
- 6) Dytiscidae
- 7) Lymnaeidae
- 3) Coleoptera
- 9) Gastropods
- 10) Filterers
- 11) Scrapers
- 12) Climbers
- 13) Swimmers

- 14) Culicidae
- 15) Dytiscidae
- 16) Libellulidae
- 17) Diptera
- 18) Odonata
- 19) Filterers
- 20) Collector gatherers
- 21) Predators
- 22) Sprawlers
- 23) Multivoltine
- 24) Univoltine
- 25) Total biomass



#### Randomization Procedure

- Combine metric data from wetland samples
- Randomly sort data into 'n' new samples equal in size to the original data
- Calculate a test statistic based on the new samples
- Repeat steps 2 and 3 a large number of times (e.g. 5,000)

From these data, a probability distribution of the randomized test statistic is generated

### Nonparametric Randomization Test



Observed value: Wilk's lambda = 0.01





| IBI Metrics                               | Response to impairment |
|-------------------------------------------|------------------------|
| Proportional abundance of Chironomidae    | Decrease               |
| Proportional abundance of scraper taxa    | Decrease               |
| Proportional biomass of Culicidae         | Increase               |
| Proportional biomass of Diptera taxa      | Increase               |
| Proportional biomass of filterer taxa     | Increase               |
| Proportional biomass of multivoltine taxa | Increase               |





### **Related Studies**

- Proportional abundance of Chironomidae
  - Gernes and Helgen (1999)
- Proportional abundance of scraper taxa
  - Burton et. al. (1999)
- Proportional biomass of Culicidae, Diptera, filterer taxa and multivoltine taxa
  - Adamus (1996)

# IBI Score

• Each metric was scored following the procedure by Minns et. al. (1994).

Metrics decreasing with impairment were scored (range 1-10):

(Raw metric/Max value)x 10= Metric Score

Metrics increasing with impairment were scored (range 1-10):

10- ((Raw metric/Max value)x 10)= Metric Score

Overall IBI was computed (range 1-100):

(Sum of all metrics for a site /  $N_m$ ) x 10 = Overall IBI where  $N_m$  is the number of metrics

| Qualitative IBI<br>Condition Ranges |         |  |
|-------------------------------------|---------|--|
| Very Poor                           | >0-20   |  |
| Poor                                | >20-40  |  |
| Fair                                | >40-60  |  |
| Good                                | >60-80  |  |
| Excellent                           | >80-100 |  |

| Site  | Score | Condition |
|-------|-------|-----------|
| IMP1C | 40    | Poor      |
| IMP2C | 42    | Fair      |
| IMP3C | 37    | Poor      |
| IMP4C | 32    | Poor      |
| IMP5C | 27    | Poor      |
| IMP6C | 37    | Poor      |
| REF1C | 88    | Excellent |
| REF2C | 84    | Excellent |
| REF4C | 77    | Good      |
| REF5C | 70    | Good      |
| REF6C | 99    | Excellent |
| REF7C | 83    | Excellent |

# Sensitivity analysis

- Sensitivity of a metric is based on computing a reduced IBI and comparing it to the overall IBI (Minns et. al. 1994).
  - Reduced IBI =10 x ( $N_m$  x IBI/10 Test metric)/( $N_m$ -1) where  $N_m$  is the number of metrics in overall IBI
- The IBI was found to be most sensitive to:
  - proportional abundance of scraper taxa
  - proportional biomass of filterer taxa

### Temporal and Spatial Variation in IBI Scores



#### Within-Year Variation





#### Between-Year Variation



### **Temporal Variation**



### Spatial Variation



### **Synopsis**

- Species-area curves were useful for determining minimum sample sizes.
- Nonparametric, discriminant function analysis was a robust method for identifying metrics.
- In general, invertebrate biomass was a better indicator of disturbance than abundance estimates.
- Seasonal variation in invertebrate composition has important implications for usefulness of IBI.
- Invertebrate metrics were robust to natural (i.e., year-to-year) variation.



# Acknowledgements



"...to protect human health and to safeguard the natural environment..."



# North Dakota Department of Health







